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Abstract

The detection of cracks in functionally graded material (FGM) structural members has been a significant subject due to

their increasing applications in various important engineering industries. A model-based approach is developed in this

paper to determine the location and size of an open edge crack in an FGM beam. The p-version of finite element method is

employed to estimate the transverse vibration characteristics of a cracked FGM beam. A rational approximation function

of the stress intensity factor (SIF) with crack depth and material gradient as independent variables is presented in order to

overcome the cumbersomeness and inaccurateness caused by the complicated expression of the analytical SIF solution in

crack modeling. Subsequently the crack is represented by a massless rotational spring and its stiffness is obtained from

fracture mechanics approach and the aforementioned SIF function. The proposed p-version finite element formulation and

crack modeling are validated by analytical literature results of intact FGM beams and two-dimensional finite element

analysis of cracked FGM beams with different supporting conditions and material gradients. The influences of crack size,

crack location and material gradient on the natural frequencies of a cracked cantilever FGM beam are studied. To identify

the crack parameters, the frequency contours with respect to crack location and size are plotted and the intersection of

contours from different modes indicates the predicted crack location and size. Numerical experiments have demonstrated

that the proposed method has excellent computational efficiency and satisfactory identification performance.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years functionally graded materials (FGM) have been regarded as one of the advanced
inhomogeneous composite materials with great application potential in many high-temperature engineering
fields such as aerospace vehicles, nuclear reactors, power generators, automobile industries. FGM are usually
made from a continuous gradient mixture of metals and ceramics in compositional profile, hence they may
take advantage of the heat and corrosion resistance of ceramics and the mechanical toughness of metals as
well as reducing the magnitude of residual and thermal stresses. Cracks frequently occurred in FGM
structures, which form a serious threat to their safe performance. Numerous research efforts have been
ee front matter r 2009 Elsevier Ltd. All rights reserved.
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devoted on the fracture analysis of FGM with different configurations [1–4]. However, quantitative detection
of the crack in FGM structures in advance is required for the application of these works in practice. Moreover,
to prevent possible catastrophic failure when initial cracks grow to some critical level, early detection and
prognosis of the damage is regarded to be rather valuable.

The presence of a crack in a structure will influence its stiffness, mass and damping properties and then
change its vibration characteristics, which may be measured and employed to detect and quantify the crack.
The vibration-based inspection approaches have received considerable attention in the last three decades.
There are a large number of literatures that investigate crack modeling, free and forced vibrations and
diagnosis of cracks. Chondros and Dimarogonas [5] provided a detailed overview of approaches to predict the
change of dynamic characteristics versus crack location and size. Dimarogonas [6] reviewed the analytical,
numerical and experimental studies on the recognition of cracks based on the changes in dynamic
characteristics. Salawu [7] presented a survey of using natural frequency as a diagnostics parameter in the
structural assessment procedures based on vibration monitoring. Doebling et al. [8] reviewed the methods of
detection, localization and severity estimation of damages in the structural systems by examining changes in
measured vibration responses.

According to the loading conditions and vibration amplitude, crack modeling usually fall into two
categories: the open crack model and the breathing crack model [9]. In the opening crack model crack always
opens during vibration while opens and closes alternately in the breathing model. The open crack model
mainly includes an equivalent linear spring or local flexibility connecting the two segments of the beam, local
change in the modulus of elasticity, reduced cross-sections and continuous flexibility variation along the length
direction of the beam. A breathing crack, usually simulated by a bilinear spring, can produce interesting and
complicated nonlinear dynamic behavior. Most of the previous research uses the open crack model whereas
comparatively less studies have been carried out applying the breathing crack model. Rizos et al. [10] modeled
the crack as the local flexibility and used a semi-analytical way to correlate the measured modes with the
crack location and size. Narkis [11] simulated cracks as an equivalent rotational spring and studied the
dynamics and identification problems of a cracked, simply supported uniform beam. Dado [12] reported
a comprehensive crack identification algorithm for beams under different supporting conditions using the
local flexibility approach. Christides and Barr [13] developed a one-dimensional continuous cracked
Euler–Bernoulli beam theory through the generalized variational principle and an assumed crack disturbance
function to be determined by experiments. Chondros [14] presented a continuous crack flexibility model based
on fracture mechanics and validated this model by experimental results obtained on aluminum and steel
beams with open cracks. Yang et al. [15] proposed a continuously varying bending stiffness expression of
beams with an open crack based on energy method. Chondros et al. [9] used a bilinear crack model and the
continuous cracked beam vibration theory to predict changes in transverse vibration of a simply supported
beam with a breathing crack. It is worth noticing that these crack models must be properly applied with
consideration of the assumptions under which the models were derived or valid, otherwise incorrect
conclusions would be made.

The modal parameters used as damage indicators usually include natural frequency, mode shape or
damping factor. Most of the literatures adopted natural frequency to identifying cracks [7]. The main reason
for the popularity of natural frequency as a damage indicator is that they are rather easy to determine with a
high degree of accuracy although they are not very sensitive to small crack. The quantitative crack
identification methodology generally requires a mathematical model [16] that explicitly includes the crack size
and location as model parameters and is capable of representing the key structural characteristics. The crack
location and size estimation can be reached by comparing and minimizing the difference between the measured
dynamic data and vibration results obtained from the structural model. A wide variety of methods have
been presented to resolve these crack detection problems, which mainly consist of the classical or modern
optimization approaches and the frequency contour method. Suh et al. [17] presented a hybrid neuro-genetic
technique for identification from natural frequency results obtained from a finite element model of the cracked
structure. Au et al. [18] used a micro-genetic algorithm to quantify the damage extent by minimizing the errors
between the measured data and numerical results. These intelligent algorithms should be carefully used since
the choice of parameters in these algorithms severely affects accuracy and efficiency of the crack identification.
Additionally, considerable computational costs would be involved to generate numerical results to be
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compared with the measured data so as to find the closest case in each of the crack identification processes. On
the contrary, the frequency contour method can effectively overcome the foregoing drawbacks. In this
method, the relation of structural natural frequency to the crack location and size is obtained based on the
numerical model of a certain structure in advance. According to the given measured frequencies the frequency
contour lines can be easily plotted. The intersection point of these superposed plots will indicate the crack
location and size simultaneously. Owolabi et al. [19] used three frequency contour lines to estimate the
normalized crack location and size of aluminum beams in an experimental study. Yang et al. [15] applied
the approach to identify two cracks in a simply supported beam. Gounaris and Papadopoulos [20] employed the
similar procedure to determine crack parameters in a rotating beam based on coupled response measurements.

Compared with the aforementioned extensive literature about investigation of cracked isotropic
homogeneous beams and intact FGM structures [21–24], much less attention was focused on vibration and
diagnosis of cracked FGM members. It is possibly due to the novelty of such materials and the complexity of
crack modeling in FGM. Among the sparse works concerning to cracked FGM beam, Byrd and Birman [25]
discussed closed-form solutions of the problems of free and forced vibrations of damaged FGM beam. Yang
and Chen [26] employed the rotational spring model to represent a crack and a semi-analytical method to
investigate free vibration and buckling characteristics of FGM beams with an edge crack. Later, Yang et al.
[27] used the similar approach to study free and forced vibration of cracked FGM beam under an axial force
and a moving load.

Finite element methods (FEM) have been widely to analyze cracked structures [28–30] since they can deal
with engineering structures of complex geometry in a standard procedure. Most of them are based on the
conventional finite element methods (CFEM). However, the convergence of CFEM depends on the number of
elements used. To accurately acquire the higher-order mode, the element size should be very small to capture
the corresponding high frequencies. Thus a large number of dof are required for accurately calculating the
higher-order modes, which greatly increases the computational efforts. To overcome the shortcoming that
CFEM has, the p-version of the FEM (p-FEM) was put forward for solving such problems [31]. The p-FEM
has a few excellent features. The most important feature is that any desired degree of accuracy can be obtained
by simply increasing the number of shape functions over the elements, while a fixed coarse mesh is used. The
other important feature is that with respect to the number of dof, it offers more rapid convergence than the
h-version of the FEM, which increases the accuracy by refining the mesh and is pervasively employed in
CFEM. Hence, computational efforts can be saved by using the p-method.

The objective of this paper is to present an efficient methodology to estimate the crack location and size in
FGM beams, which takes full advantages of the p-FEM in structural analysis. The p-version FGM beam
element is constructed to analyze free vibration of cracked FGM beams and thus a more efficient identification
can be obtained. The analysis is limited to open cracks just to avoid the nonlinearities associated with
breathing crack models. The presence of cracks is assumed to only influence stiffness properties of the
structure. Since the complicated analytical form of the stress intensity factor (SIF) in FGM beam under
investigation is difficult to make use of in crack modeling, a convenient rational approximation function is
applied to facilitate the calculation of local flexibility representing the effect of crack. The convergence and
accuracy of the proposed method are examined by using the literature results of intact FGM beams and two-
dimensional finite element analysis for cracked FGM beams. Subsequently the effects of crack location and
size and material gradient on the natural frequencies are studied. Finally the frequency contours are obtained
and employed to identify the crack in FGM beams. Numerical experiments are presented to demonstrate the
effectiveness of the proposed procedure.

2. The p-FEM formulation for vibration analysis of a cracked FGM beam

Consider a FGM beam with an edge crack parallel to the direction of the material gradient undergoing
transverse bending vibration, as shown in Fig. 1. In most of the existing solutions concerning FGM, material
properties usually are assumed as either an exponential or a power function of a spatial variable. In the present
study, the elastic modulus E, shear modulus m and mass density r are taken to be of the following forms:

EðyÞ ¼ E0 e
by; mðyÞ ¼ m0 e

by; rðyÞ ¼ r0 e
by, (1)



ARTICLE IN PRESS

Fig. 1. A FGM beam with an open edge crack.
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where E0, m0, r0 are the values of these elastic properties at y ¼ 0, b ¼ ln(E2/E1)/h is a constant representing
the material gradient. These forms of the material properties have been previously used by a number of
investigators, e.g. Delale and Erdogan [32] and Noda and Jin [33].

The p-version FEM is adopted to model this cracked FGM beam. The beam is discretized into two intact
FGM beam elements and a crack element from the crack section. The elements on the left and right sides of
the crack are numbered as the first and second element, respectively. The constructions of the intact FGM
beam elements and the crack modeling are presented below.
2.1. Governing equation of free vibration of intact FGM beams

According to Kirchoff–Love hypothesis, the axial displacement u can be expressed as

uðx; y; tÞ ¼ �y
qwðx; tÞ

qx
, (2)

where w(x, t) denotes the transverse displacement of the beam. Using Eq. (2), the linear strain and stress in the
x direction can be written as follows:

�x ¼
qu

qx
¼ �y

q2w

qx2
; sx ¼ EðyÞ�x ¼ �y

q2w

qx2
EðyÞ. (3,4)

Then the strain energy S and kinetic energy T are given by

S ¼
1

2

Z L

0

Z
A

sx�x dAdx; T ¼
1

2

Z L

0

Z
A

rðyÞ _wdAdx, (5,6)

where ( � ) and A denote the differentiation with respect to time and the area of cross-section of the beam,
respectively. Applying Hamilton’s principle, the following differential equation of motion can be obtained:

D11
d4w

dx4
� I1

d2w

dt2
¼ 0, (7)

where D11 ¼ �b
R h=2
�h=2 y2EðyÞdy and I1 ¼ �b

R h=2
�h=2 rðyÞdy.

2.2. p-version FGM beam element for structural modal analysis

For simplicity and convenience in mathematical formulation, the local non-dimensional coordinate
x ¼ 2(x�xi)/Le�1, where Le is the element length and xi the coordinate value of the left end of the element, is
introduced.

The basic idea of the p-FEM is to use more terms of shape functions compared with that of CFEM
to approximate the realistic deformation of a structure, thus achieving more rapid convergence than CFEM.
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For a one-dimensional p-version FGM beam element, the transverse displacement w can be expressed as
follows:

w ¼ w1j1 þ y1j2 þ w2j3 þ y2j4 þ
Xn

i¼5

wiji, (8)

where w1, y1, w2 and y2 are the transverse displacements and slopes at the two end nodes of the beam element,
wi (i44) are generalized internal dof, j1 to j4 are the four standard Hermite cubics, ji (i44) are higher-order
interpolating functions which possess C1 continuity and form a complete set. Here the shifted Legendre
polynomials are adopted since they are second derivative orthogonal with respect not only to themselves but
also to the first four Hermite cubics. Furthermore, they contribute a value of zero at each end of the element,
hence not affecting the imposition of boundary conditions through nodal constraints alone. These functions
have the following expressions:

jiðxÞ ¼
X½ði�1Þ=2�
k¼0

ð�1Þkð2i � 2k � 7Þ!!

2kk!ði � 2k � 1Þ!
xi�2k�1; i44, (9)

where k!! ¼ kðk � 2Þ � � � 2 or 1, 0!! ¼ ð�1Þ!! ¼ 1 and [ � ] denotes taking integer part.
The shape functions in Eq. (8) can be written in row matrix form as

N ¼ ½j1 j2 j3 j4 j5 � � � jn�. (10)

After constructing the higher-order shape functions, the stiffness matrix and the mass matrix are obtained
according to Eq. (7) and the standard procedure of the Galerkin FEM. The stiffness and mass matrices are
represented in terms of the local coordinates as

Ke ¼
8D11

L3
e

Z 1

�1

d2NT

dx2
d2N

dx2
dx; Me ¼

I1Le

2

Z 1

�1

NTNdx. (11,12)

Substituting Eq. (10) into Eqs. (11) and (12), one can acquire the explicit forms of the element stiffness and
mass matrices by symbolic computations. As an illustration, when n ¼ 8 the expressions of the two matrices
are given as follows:

Ke ¼
D11

L3
e

12 6Le �12 6Le 0 0 0 0

4L2
e �6Le 2Le 0 0 0 0

12 �6Le 0 0 0 0

4L2
e 0 0 0 0

16

5
0 0 0

Sym
16

7
0 0

16

9
0

16

11

2
6666666666666666666666664

3
7777777777777777777777775

,
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Me ¼
I1Le

420

156 22Le 54 �13Le 14
�8

3
0

2

33

4L2
e 13Le �3Le 3L

�Le

3

�Le

9

Le

33

156 �22Le 14
8

3
0

�2

33

4L2
e �3Le

�Le

3

Le

9

Le

33

Sym
8

3
0
�16

99
0

8

33
0
�16

429

8

143
0

8

429

2
6666666666666666666666666666664

3
7777777777777777777777777777775

.

2.3. Crack modeling

In order to study the effect of the crack on the dynamic behavior of the FGM beam, the crack model has to
be established firstly. Based on fracture mechanics principles, the additional strain energy produced by the
crack for plane stress [34] is

Uc ¼ b

Z a

0

K2
I

EðyÞ
da, (13)

where KI is the SIF under the mode-I loading condition and is a function of the beam geometry, the external
loading and the material properties. For a FGM strip with an open edge crack subject to bending illustrated in
Fig. 1, the analytical solution of the SIF was given by Erdogan and Wu [4] as

K I ¼ �
4mðaÞ

ffiffiffi
a
p

1þ k

X1
n¼0

An, (14)

where m ¼ E/2(1+n) is the shear modulus with n being the Poisson’s ratio, k ¼ 3�4n for plain strain and
k ¼ (3�n)/(1+n) for plain stress, An are to be determined through calculating the boundary integrals
using Gaussian quadrature approach and then solving the resulting functional by collocation method. It can
be seen that the form of KI contains infinite terms, which is quite inconvenient in practical calculation. To
overcome this drawback, we express the SIF in the common form used in isotropic homogeneous materials as
follows [35]:

K I ¼ s0
ffiffiffiffiffiffi
pa
p

F ðE2=E1; a=hÞ, (15)

where s0 ¼ 6M/bh2 with M being the external bending and F is an unknown function of two independent
variables. Through a number of numerical experiments, the function F is eventually determined to be
expressed as a rational function:

F ðE2=E1; a=hÞ ¼
p1 þ p2 lnðE2=E1Þ þ p3½lnðE2=E1Þ�

2 þ p4½lnðE2=E1Þ�
3 þ p5ða=hÞ þ p6ða=hÞ2

1þ p7 lnðE2=E1Þ þ p8½lnðE2=E1Þ�
2 þ p9ða=hþ p10ða=hÞ2 þ p11ða=hÞ3

, (16)

where the coefficients p1, p2,y,p11 ¼ 1.1732, �0.3539, 0.0289, �0.0061, 0.6625, 3.0720, �0.0014, �0.0017,
1.9917, �0.3496 and �3.0982 are determined by fitting Eq. (15) based on the least square method to the
numerical values of the SIF for specific material gradients and normalized crack size given by Erdogan and
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Fig. 2. (a) Stress intensity factor in FGM and (b) computed local flexibility.
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Wu. The numerical values of the SIF and the resulting approximation are plotted in Fig. 2(a) and excellent
agreement can be observed.

From Castigliano’s theorem [36], the additional local flexibility due to the crack is

c ¼
q2Uc

qM2
. (17)

Using Eqs. (13), (15)–(17), one can compute the local flexibility. The computed results for several material
gradients are shown in Fig. 2(b). Here the effects of the crack are simulated by a massless rotational spring.
The spring connects the adjacent left and right elements and couples the slopes of the two FGM beam
elements at the crack location. Based on the stiffness matrices of the two FGM beam elements and the open
crack model, the global stiffness matrix of the cracked FGM beam can be assembled as follows:

K ¼

K1
1;1 K1

1;2 K1
1;3 K1

1;4 0 0 0

K1
2;1 K1

2;2 K1
2;3 K1

2;4 0 0 0

K1
3;1 K1

3;2 ðK
1
3;3 þ K2

1;1Þ K1
3;4 K2

1;2 K2
1;3 K2

1;4

K1
4;1 K1

4;2 K1
4;3 K1

4;4 þ
1

c

� �
�
1

c
0 0

0 0 K2
2;1 �

1

c
K2

2;2 þ
1

c

� �
K2

2;3 K2
2;4

0 0 K2
3;1 0 K2

3;2 K2
3;3 K2

3;4

0 0 K2
4;1 0 K2

4;2 K2
4;3 K2

4;4

K1
5;5 0 � � � 0

0 K1
6;6 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � K1
n;n

k2
5;5 0 � � � 0

0 K2
6;6 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � K2
n;n

2
666666666666666666666666666666666666666664

3
777777777777777777777777777777777777777775

(18)

where Kk
i;j denotes the component at the ith row and jth column of the kth element stiffness matirx. The upper

submatrix and the other two submatrices in Eq. (18) correspond to the standard cubic and the higher-term of
shape functions, respectively. The order of the global stiffness matrix K is 2n�1.
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2.4. Finite element equations for free vibration

By using the standard procedures of traditional FEM, the eigenvalue problem can be obtained as

ðK� o2MÞW ¼ 0, (19)

where K and M are the global stiffness and mass matrices, W is the column vector of the amplitudes of the
nodal displacements, o is the natural frequency of vibration. The solution of the eigenvalue problem can then
proceed as usual.

3. Validation of the proposed method

In order to verify the applicability and performance of the present formulation, comparisons of the present
method with the available data in the literature and two-dimensional FEM models are made. Unless otherwise
stated, the FGM beam under investigation has the following material and physical parameters: E1 ¼ 70GPa,
r1 ¼ 2780 kg/m3 at the top surface and slenderness ratio L/h ¼ 20, normalized crack size a/h ¼ 0.2. Different
material gradient and supporting conditions are considered.

The first case study concerns free vibration of an intact FGM beam. The lowest three modal frequencies
of the FGM beam with cantilever and clamped–clamped boundary conditions are calculated by the present
p-FEM and the CFEM, respectively. The results as well as the solutions given by Yang et al. [26], which are all
Table 1

Comparison of the first three non-dimensional natural frequencies of intact FGM beams.

Method E2/E1 ¼ 0.2 E2/E1 ¼ 1 E2/E1 ¼ 5

Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3

Cantilever

p-FEM (6) 3.30 20.82 59.52 3.52 22.16 63.35 3.30 20.82 59.52

CFEM (6) 3.31 20.88 70.61 3.52 22.22 75.16 3.31 20.88 70.61

p-FEM (10) 3.30 20.70 57.97 3.52 22.03 61.70 3.30 20.70 57.97

CFEM (10) 3.30 20.73 58.41 3.52 22.06 62.18 3.30 20.73 58.41

Yang et al. 3.30 20.70 57.97 3.52 22.03 61.70 3.30 20.70 57.97

Clamped–clamped

p-FEM (8) 21.02 57.97 119.91 22.37 61.69 127.63 21.02 57.97 119.91

CFEM (8) 21.11 59.10 137.46 22.46 62.90 146.30 21.11 59.10 137.46

p-FEM (12) 21.02 57.94 113.59 22.37 61.67 120.90 21.02 57.94 113.59

CFEM (12) 21.03 58.17 115.16 22.39 61.92 122.58 21.03 58.17 115.16

Yang et al. 21.02 57.94 113.59 22.37 61.67 120.90 21.02 57.94 113.59

Lc

a

Crack face 

Crack tip 

3l/4
l/4

Layer

1
2
3

100 

...

Fig. 3. The multilayer plate model of FGM beams and illustration of the finite element mesh at the cracked region.
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normalized by ō ¼ o=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
D0=I0

p
, where D0 and I0 are the corresponding values of D11 and I1 of an isotropic

homogeneous beam (E2/E1 ¼ 1), are listed in Table 1, where numbers in parentheses denote the number of
system dof used. The non-dimensional natural frequencies of FGM beams with E2/E1 ¼ 0.2 and 5.0 are the
same because the values of D11/I1 are identical. Table 1 presents that with the same dof, the results obtained by
the p-FEM converge more rapidly to Yang’s solutions than those by the CFEM.

In the following validation examples, two-dimensional FEM of the FGM beam with a crack are established
using the commercial FE package ANSYS. The FGM beam is firstly assumed to consist of 100 layers of
uniform height containing isotropic homogeneous materials, as shown in Fig. 3. The material parameters are
constant in each layer and the average of the values on the top and the bottom surface of the corresponding
layer. The reason of making such assumption lies in two facts: (1) the FGM beam can be modeled as a
multilayer plate structure when sufficient layers are adopted [37] and (2) the stresses around the crack tip have
conventional square-root singularity if the material properties are continuous or piecewise differentiable [33].
Then the multilayer plate structure is discretized using the 8-node quadrilateral plane stress element
PLANE42, which has two dof at each node, namely, the displacements in the nodal x and y directions. The
edge crack is modeled by generating two independent sets of nodes along the crack surfaces. The quadrilateral
elements around the crack tip are reduced to be triangular-shaped. In addition, the mid-side nodes of these
Fig. 4. The first two frequency ratios of FGM beams with an edge crack at varying locations for different boundary conditions:

(a) cantilever, (b) hinged–hinged and (c) clamped–clamped.
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triangular elements are moved to 1/4 point of the corresponding side in order to produce the required stress
singularity, as illustrated in Fig. 3.

The above two-dimensional finite element models are used to analyze the vibration characteristics of FGM
beams with cantilever, hinged–hinged and clamped–clamped supporting conditions. Also, the present p-FEM
using 8 terms of shape functions is applied to solve the corresponding one-dimensional problems. The ratios of
the first two natural frequencies of the cracked cantilever, hinged–hinged, clamped–clamped FGM beams to
those of the intact counterparts are plotted in Fig. 4, obtained by the above methods and given by Yang et al.
[26]. It can be seen that the results by the present method are more close to the two-dimensional models
analysis compared with Yang’s results. It should be noted that the derivation of the local flexibility by Yang
et al. is based on the original analytical SIF solution, i.e. Eq. (14). The fundamental frequency ratios
of cantilever FGM beams with an edge crack for different material gradients E2/E1 ¼ 1 and 5, are shown in
Fig. 5. Excellent agreement of the proposed method with the two-dimensional FEM analysis is again
observed, while the approach by Yang et al. produces large errors in such cases. From the above examples, the
efficiency and accuracy of the present crack modeling and the proposed p-FEM formulation are
demonstrated.
Fig. 5. Fundamental frequency ratio of cantilever FGM beams with an edge crack for different material gradients: (a) E2/E1 ¼ 1 and

(b) E2/E1 ¼ 5.

Fig. 6. The first four natural frequency ratios of a cantilever FGM versus crack location for different crack sizes and material gradients.
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4. Vibration analysis of cracked FGM beams

After testing the proposed p-FEM formulation, vibration analysis of a cracked cantilever FGM beam of
slenderness ratio L/h ¼ 20 is carried out and discussed below. In the present calculation, 8 terms of shape
functions are also employed to approximate the transverse displacement fields within the two p-version FGM
beam elements used. Dynamic behavior of FGM beams with other supporting conditions can be investigated
in the similar means.
Fig. 7. The first four natural frequency ratios of a cantilever FGM beam versus crack size for different crack locations and material

gradients.

Fig. 8. The first four natural frequency ratios of a cantilever FGM beam versus material gradient (Lc/L ¼ 0.3).
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Fig. 9. The first four natural frequency ratio versus crack size and location for a cantilever FGM beam.
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Fig. 6 shows the first four natural frequency ratios as functions of crack location for different normalized
crack sizes and material gradients. It can be seen that the first four natural frequency ratios vary with the
normalized crack location. For a specific normalized crack size and material gradient, the crack at the fixed
end has a most severe effect on the reduction of the fundamental frequency. Additionally, a fact that may be
derived from the figure is that when the crack located at certain positions, the natural frequencies of the
second mode or the higher modes keep unchanged. These positions are usually called vibration nodes for a
given mode.

The first four natural frequency ratios as functions of crack depth for different crack locations and material
gradients are shown in Fig. 7. As indicated from the figure, the first four natural frequency ratios vary with the
normalized crack size. For a certain normalized crack location and material gradient, the first four frequency
ratios would monotonically decrease as the crack size increases. It can be derived from the fact the crack
would introduce local flexibility and then lead to loss of structural stiffness.

The first four natural frequency ratios as functions of material gradients for some crack sizes and a certain
crack location (Lc/L ¼ 0.3) are given in Fig. 8. It can be found that the natural frequencies of each mode are
more severely affected when the elastic gradient E2/E1 is much less than 1 and vice versa. As the elastic
gradient increases, the rate of increase of each modal frequency gradually decreases. This phenomenon is due
to that the value of the material gradient determines whether the crack is located on the compliant or the stiff
side of the FGM beam.

A three-dimensional plot of the natural frequency ratio versus normalized crack location and size is shown
in Fig. 9. From the above analysis, it could be deduced that the natural frequencies are influenced by both the
crack location and crack size of the cracked FGM beam and the extent of influence would vary depending on
the material gradient.

5. Crack identification by frequency contours

As shown above, both crack location and size have influence on the frequencies of the cracked FGM beam
for a certain material gradient. It indicates that one frequency could be related to different crack locations and
sizes. Based on this understanding, the contour curve, which has the same frequency ratio corresponding to
different combinations of crack locations and sizes, could be plotted in a figure with normalized crack
locations and sizes as its axes. Fig. 10 shows frequency ratio contours for the first four modes of a cantilever
FGM beam with slenderness ratio L/h ¼ 20 and material gradient E2/E1 ¼ 0.2 containing an open edge crack,
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Fig. 10. Frequency ratio contours for a FGM cantilever beam with an edge crack: (a) mode 1, (b) mode 2, (c) mode 3 and (d) mode 4.

Table 2

Crack cases and prediction results for different error levels.

Crack case Reference crack Error rate Predicted crack Prediction error

Lc/L a/h (%) Lc/L a/h Location (%) Size (%)

1 0.2 0.2 1 0.197 0.204 1.5 2.0

2 0.186 0.232 7.1 15.8

2 0.2 0.4 1 0.198 0.405 1.0 1.3

2 0.193 0.424 3.5 6.0

3 0.4 0.2 1 0.404 0.186 1.0 7.0

2 0.407 0.174 1.8 13.0

4 0.4 0.4 1 0.398 0.406 0.5 1.5

2 0.401 0.395 0.3 1.3

5 0.6 0.2 1 0.582 0.211 3.0 5.5

2 0.571 0.224 4.8 12.0

6 0.6 0.4 1 0.595 0.404 0.8 1.0

2 0.598 0.388 0.3 3.0
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which are obtained by the proposed p-FEM. The location and size corresponding to any point on the curve
would become the possible crack location and size. Although two reference frequency ratios are theoretically
sufficient to identify the crack in the beam, two frequency ratio contour lines may intersect at more than one
point. Therefore, three reference frequency ratios are usually required to uniquely determine the two unknown
crack parameters.

In the present study, the reference frequency ratios as inputs to the frequency contours are taken as

ocj

o0j

� ��
¼

ocj

o0j

� �c

þ err � �j ; j ¼ 1; 2; 3, (20)

where (ocj/o0j)
c are the calculated frequency ratios with a prescribed scenario of the crack, err represents the

modeling and measurement error rate, e is a number random from uniform distribution in the interval [�0.5
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Fig. 11. Crack identification by frequency contour from the first three modes (- - - mode 1, - � - mode 2, — mode 3): (a) case 1, (b) case 2,

(c) case 3, (d) case 4, (e) case 5 and (f) case 6.
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0.5]. Here err is taken as 1% and 2% and six scenarios of the crack are considered, as listed in Table 2. Then
the reference frequency ratios generated from Eq. (20) are employed as inputs to acquire the frequency
contours for each mode. In the presence of the measurement and modeling error, the three contour curves do
not intersect at one point. In this situation, the centroid of the three pairs of intersections is taken as the crack
location and size. The crack locations and sizes obtained from 20 simulations for each crack scenario are
averaged to get their mean values. Fig. 11 shows the crack identification results by using the frequency contour
plots with err ¼ 2% in one sample for illustrative purpose. The intersection A of the three curves indicates the
crack location and size. Table 2 presents the comparison of the reference crack parameters and the predicted
crack parameters for different error rates in various scenarios. Several things can be observed from this table.
First, the precision of crack parameter identification generally gets worse as the measurement and modeling
error increases. Second, the crack size has been detected with less accuracy than the crack location. Third, the
identification errors decrease as the crack size becomes larger.

6. Conclusions

A methodology based on the p-FEM to detect crack location and size is developed in this paper. Because of
the favorable features of the p-FEM, the present formulation is a useful tool to deal with high-performance
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computation in structural crack identification of FGM beams. A rational approximation of SIF with material
gradient and crack size as two independent variables is presented in order to facilitate crack modeling in FGM
beams. Subsequently the crack is represented by a massless rotational spring and its stiffness can be computed
from fracture mechanics. The accuracy and convergence of the proposed p-version finite element formulation
and the crack modeling are validated by the literature results for intact FGM beams and two-dimensional
analysis for cracked FGM beams, respectively. It should be noted that the present crack modeling based on
the rational approximation algorithm along with the p-FEM formulation may be extended to simulate in a
very concise and efficient way the effect of cracks for which the SIF of FGM with arbitrary material property
distributions were obtained by theoretical or numerical approaches. The effects of crack size and location and
material gradient on the natural frequencies of cracked cantilever FGM beams are investigated in detail. The
frequency contours for various modes with respect to crack location and size are plotted together and the
intersection of these contours could point out the predicted crack location and size. Numerical experiments
have demonstrated that the present method has excellent computational efficiency compared with the CFEM
and satisfactory identification performance even with simulated measurement and modeling errors. As
mentioned before, FGM have found increasingly attractive applications in space structures, fusion reactors
and so on. Therefore, the dynamics and diagnosis of cracked FGM beams investigated in this paper is of
practical significance and able to be used in structural health monitoring.
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